skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mueller, Emmi A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Much of life on Earth is at the mercy of currents and flow. Residence time (τ) estimates how long organisms and resources stay within a system based on the ratio of volume (V) to flow rate (Q). Short residence times promote immigration but may prevent the establishment of species that cannot quickly reproduce, or resist being washed out. In contrast, long residence times reduce resource input, selecting for species that can survive on a low supply of energy and nutrients. Theory suggests that these opposing forces shape the abundance, diversity, and function of flowing systems. In this study, we subjected chemostats inoculated with a complex lake microbial community to a residence time gradient spanning seven orders of magnitude. Microbial abundance, richness, and evenness increased with residence time, while functions like productivity and resource consumption decreased along the gradient. Microbial taxa were non- randomly distributed, forming distinct clusters of short-τ and long-τ specialists, reflecting a pattern of niche partitioning. Consistent with theoretical predictions, we demonstrate that residence time shapes assembly processes with direct implications for biodiversity and community function. These insights are crucial for understanding and managing flowing environments, such as animal gut microbiomes, soil litter invertebrate communities, and plankton in freshwater and marine ecosystems. 
    more » « less